以下文章转载自:
American Journal of Neuroradiology
Presurgical Mapping with fMRI and DTI: Soon the Standard of Care?
The technique of fMRI has been around for over 30 years, and DTI for about 15 years. The first application of fMRI was by Ogawa et al, in 1990. In a rat model, this team was able to manipulate the blood oxygen level–dependent (BOLD) signal by inducing changes in deoxyhemoglobin concentrations with insulin-induced hypoglycemia and anesthetic gases. About a year later, Kwong and Belliveau published the first images of cerebral areas that responded to visual stimulation and vision-related tasks.
DTI was first described by Basser et al, who were experimenting on a voxel-by-voxel characterization of 3D diffusion profiles, which took into account anisotropic effects (instead of eliminating them, as in standard DWI). Tractography (or fiber tracking) was developed by applying statistical models to DTI data to obtain anatomic fiber bundle information.
Although both fMRI and DTI are now currently available in most scanners, well beyond the framework of academic institutions and research protocols, these techniques are not quite considered “standard of care.” Indeed, the processes that govern the translation of new technology into clinical practice are complex. Even more complex are the processes that lead to establishing clinical practice as standard of care, particularly at a time when established patterns of care delivery are being increasingly challenged and economic difficulties affect all aspects of society, certainly including health care.
However, some challenges, especially with fMRI, go back to basic cerebrovascular physiology. The cerebrovascular response to neuronal activation, also referred to as “functional hyperemia,” was first recognized in 1890 by Roy and Sherrington, who initially proposed a metabolic hypothesis to the phenomenon, ie, mediation via release from neurons of vasoactive agents in the extracellular space. The major role of astrocytes as key intermediaries in the neurovascular response — being interposed between blood vessels and neuronal synapses via their foot processes as modeled in the “tripartite synapse model” of the neurovascular unit — has since been recognized. Although complex, astrocyte response to changes in synaptic activity is primarily mediated by glutamate receptors through changes in intracellular Ca2+ concentration.
In fMRI, contrast is based on the BOLD effect, which reflects local shifts of deoxygenated-to-oxygenated hemoglobin ratios due to local increases in blood flow in excess of oxygen utilization following brain activity. As a result, the foundation of the fMRI BOLD signal is based on local changes in cerebral blood flow that are not linearly related to the metabolic changes inducing the flow change.
Therefore, BOLD fMRI rests on 3 major approximations: 1) the technique does not directly reflect neural activity, ie, generation and propagation of action potentials, synaptic transmission, or neurotransmitter release/uptake; 2) the changes in BOLD signal originate from that portion of the vasculature experiencing the greatest change in oxygen concentration, which occurs in the venules in the immediate vicinity of the active neurons; and 3) more importantly, fMRI signal relies on intact “neurovascular coupling,” the phenomenon that links neural activity to metabolic demand and blood flow changes.
The main reason fMRI is clinically useful most of the time is that under most circumstances neurovascular coupling remains fully intact, unaltered by confounding disorders that can interfere with this relationship. However, it has long been known that neuronal activation results in local blood flow increases that exceed local oxygen consumption, so that the oxygen utilized may constitute a small fraction of the amount delivered. Under normal conditions, the oxygen concentration in draining venules increases during neuronal activation. The original researchers who discovered this phenomenon named it “neurovascular uncoupling” or “neurovascular decoupling.” From a medical perspective, “uncoupling” or “decoupling” implies a pathologic condition, suggesting something abnormal about tissue that demonstrates this phenomenon. More recently, researchers have preferred the term “functional hyperemia” to describe the phenomenon. In fact, when there is interference with the mechanism producing functional hyperemia, the term "neurovascular uncoupling" has been re-applied, albeit with a completely opposite meaning from that originally used. Impairment in the flow response leads to neurovascular uncoupling and a reduced BOLD signal in response to neural activity, which can lead to false-negative errors in fMRI maps.
John Ulmer, reporting on a series of 50 patients, found that although accurate cortical activation could be demonstrated most of the time, various cerebral lesions could cause false negatives in fMRI results when compared with other methods of functional localization, suggesting contralateral or homotopic reorganization of function. He further suggested that pathologic mechanisms such as direct tumor infiltration, neovascularity, cerebrovascular inflammation, and hemodynamic effects from high-flow vascular lesions (ie, arteriovenous malformations and fistulas) could trigger “neurovascular uncoupling” in those patients. Neurovascular uncoupling, and other pitfalls of fMRI, are briefly discussed.
David Mikulis discusses “neurovascular uncoupling syndrome,” where lack of functional hyperemia during neuronal activation can have long-term consequences on the integrity of the tissue in the absence of acute ischemia.
Jay Pillai discusses the successful clinical application of a technique to improve the consistency of BOLD fMRI by using a breath-holding technique.
Aaron Field discusses the technique, clinical use, and some limitations of DTI and tractography, and describes patterns of alteration of white matter fiber tracts by neoplasms and other lesions.
Lastly, Wade Mueller shows that a neurosurgeon may obtain significant improvements in clinical outcomes and a drastic reduction in complication rates when working with a team that provides presurgical mapping of cerebral lesions by using fMRI and DTI (wisely, fully acknowledging their limitations) and when various team members clearly communicate using a common language.
Functional MRI and DTI are extremely useful techniques that have become increasingly available to neuroradiologists in recent years. As with any technique, these work best as parts of a whole. A good understanding of physiologic mechanisms is necessary to make us good “functional” specialists, and a good understanding of the limitations of any technique is necessary to make us better physicians.
Image modified from: Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns.
关于大脑的奥秘你了解多少呢?人脑、猪脑、狗脑……不同物种的大脑有什么区别?进入“动物脑乐园”~一起探索3D大脑吧!https://www.huashan.org.cn/BrainZool“动物脑乐园”是由复旦大学神经外科研究所脑功能实验室创建的一个科普网站,运用先进的三维摄像技术,展示了猕猴大脑以及人脑、猪脑、羊脑等共十二种动物的脑标本,使我们可以突破时间和空间的限制,随时随地学习解剖学知识,直观的了解和感受大脑的性状、质地等信息,避免只见树木不见森林的困境。在大脑三维展示界面,我们可以通过鼠标或触控板来旋转、缩放每一个动物的脑标本,从任何一个角度进行观察,就像该脑标本在我们面前一样!直观的感受不同动物大脑的性状和大小,并与人脑进行比较。在人类大脑三维展示界面,我们不仅可以细致的观察到每一条沟回,还可以通过点击相应区域的编码,查看其位置和负责的功能,从而加深对大脑结构的理解。值得一提的是,在“动物脑乐园”里,不仅可以观察到猕猴3D脑标本,还可以看到猕猴的全脑切片。吴劲松教授团队从同一猴脑的离体MRI及全脑组织切片髓鞘染色(LFB)数据集中,间隔800μm取一层,构建了集合组织切片髓鞘染色(LFB)、组织切片髓鞘染色-伪彩化、断层标本图、高分辨率MRI结构像及离体脑dMRI断层纤维束成像和纤维方向分布图(限制球面反卷积-CSD)六大模态的断层对照图谱。我们只需要点击相应的解剖名称,就可以在图谱上对应位置显示标记,同时可与另外两大模态的dMRI方向性信息进行对照,极大的方便了我们的观看。使用“动物脑乐园”不仅方便我们了解不同物种大脑结构的差异,还可以使脑解剖结构的学习不再枯燥和抽象,激发我们对神经科学的兴趣!快来“乐园”里探索奥秘吧~关于复旦大学神经外科研究所脑功能实验室(https://www.huashan.org.cn/wulab/):该实验室是吴劲松教授团队在周良辅院士和毛颖教授的倡导下,依托临床神经外科建立的脑科学研究平台和创新转化技术平台。实验室围绕“脑功能精确定位、保护和康复”这一核心目标,整合应用多模态技术(神经导航、术中实时影像、脑功能成像、脑电、术中神经电生理监测、经颅磁刺激等),开展脑科学的临床转化研究;同时利用神经外科医生“与大脑直接对话”的技术优势,开展汉语语言等高级神经认知的机制研究。吴劲松教授2010年赴美国Mayo Clinic进修,已发表学术论文300余篇,其中SCI论文138余篇,主编出版专著2部,副主编出版专著2部,其中《神经导航外科学》获“上海市图书奖二等奖”(2009)和“第二届中国出版政府奖图书奖提名奖”(2010);获得计算机软件著作权1项;授权国家发明专利12项。曾获中华医学科技奖二等奖(2023)、上海市科技进步一等奖(2016)、教育部科技进步一等奖(2014)、中华医学科技奖一等奖(2009)。其中,吴劲松教授2023年获得的中华医学科技奖二等奖,是与深圳市美德医疗电子技术有限公司共同完成的《脑肿瘤精准外科技术体系的建立与脑功能保护研究》。该项目研发出的美德脑功能定位保护系统,包含用于术前的脑功能视听觉刺激系统和用于术中的脑功能术中信息刺激系统,实现了个体化脑功能区精准定位与保护。不论是术前视听觉刺激系统还是术中信息刺激系统,都配备了一整套的软件系统,包含13个常用标准任务,可根据病灶具体部位实现个体化的任务选择。美德脑功能定位保护系统为用户提供了更加稳定、便捷的操作,极大地方便了临床医生的临床诊治和科研人员的研究探索,让磁共振脑功能检查和脑科学研究更安全、高效,推动脑疾病诊治和相关临床科研的深入发展。
为满足广大用户对功能磁共振成像技术(fMRI)的应用需求,帮助磁共振脑成像领域临床医生、科研工作者、研究生群体快速掌握脑功能课题的实验任务设计、影像数据处理和分析的基本原理和实操方法。4月12日至14日,由美德医疗主办的第13届Task-fMRI基础培训班在深圳总部成功举办!特邀深圳大学心理学院成晓君教授、王超教授、林正龙教授等一线青年学者进行授课,讲解fMRI的基础知识,介绍常用数据处理工具,带教实验设计、任务编写和数据处理全流程操作,采用了实践操作与理论讲解相结合的教学方式,注重培养学员的自主操作能力,帮助学员们深入理解Task-fMRI技术的原理和应用。培训班济济一堂,广大学员皆对脑科学有着高度的学习热情和探究精神,为Task-fMRI相关知识和技能的掌握及应用,奠定了坚实的基础。为期三天紧凑而丰富的教学及实操课程,让一众学员们表示受益匪浅,更是积极与讲师深入交流解己所惑。未来,美德医疗将继续开展影像技术培训,促进相关知识和技能的普及和应用,并持续将客户需求转化到产品优化与技术服务!
重大喜讯,2024年04月07日,美德医疗自主研发的“磁共振病人监护仪”成功获批广东省药品监督管理局颁发的《医疗器械注册证》。该产品的上市,标志着美德医疗成为国产无磁监护领域首家注册上市的企业,不仅彰显了我司对磁兼容医疗设备研发的专业技术实力,也意味着美德医疗迈入了一个更高标准、更高起点、更高层次的新平台,为更多的患者和医疗机构提供磁共振环境下安全、高效、先进的整体解决方案!未来,我们将不断提升产品质量和服务水平,继续加大研发投入,推动技术创新和产品升级,为医疗影像事业的发展贡献更多的智慧和力量!
2024年3月29日-31日,由电子科技大学生命科学与技术学院、四川省医学科学院∙四川省人民医院联合主办的“首届天府孤独症脑科学国际论坛”在电子科技大学清水河校区成功举办。本次会议邀请了从事孤独症研究的神经科学、遗传学、心理认知学和临床、康复领域的国内外知名专家,面向广大关注孤独症的科研人员、临床医生和相关家庭,从行为、分子、环路、脑影像及医学干预与行为矫正等多层面解析孤独症的机制及精确诊断与治疗的前沿方法。大会还组织家长-专家圆桌讨论,为孤独症家庭与孤独症研究领域专家们提供面对面探讨的机会,以及举办“星星集市”、“湖畔音乐会”等公益活动,展示“来自星星的孩子”的独特艺术天赋。美德医疗特别赞助本次会议,并携脑科学相关产品亮相现场,吸引了诸多学者同仁前来交流,不少在场的老师和医生对美德医疗脑功能视听觉刺激仪在科研及临床上的贡献给出了高度评价。未来,美德医疗将坚持科学探索,不断优化产品,为推进国内孤独症研究领域多学科协同发展,促进孤独症脑影像技术产学研用成果转化贡献力量!
随着社会就业形势日渐严峻,国家大力加强关于促进高校毕业生就业的工作部署,为积极响应国家政策,贯彻产教融合与高校共谋发展,我司也迎来了深圳技术大学健康与环境工程学院副院长康雁教授等一众老师及学生的访企拓岗促就业专项行动。美德医疗创始人汤洁女士对康教授一行人的到访表示热烈欢迎,通过共同参观我司的文化展厅、研发中心、生产仓储等实体产业规模,向大家详细介绍了美德的成长历程、企业文化、专研领域、公司荣誉、发展方向等等。在充分了解美德目前的发展现状之后,双方就我司的人才需求结合学校的人才培养展开了深入的交流,作为深圳专精特新的技术企业,我司由磁共振第三方部件源头制作供应,对产业链前端-硬件的研发极其看重。美德大家庭的每一位成员,对公司有着极高的认同和归属感,钻研与热爱并行,技能与素养同在。借此交流机会,希望能与深圳技术大学加强合作共同培养专项人才,贴近技术发展契合市场需求,为学生的实习实训就业提供更多机会,实现校企紧密联系、资源共享、合作共赢!